

SPECIFICATIONS

Aerospace	L168 T6511
Commercial	2014A

Aluminium alloy L168 - 2014A is a very high mechanical strength alloy used for critical applications and is the most widely used aluminium bar alloy in the aerospace industry.

It has very good machinability and is thus used for the production of complex machined parts.

CHEMICAL COMPOSITION

BS L168(1978) Alloy L168		
Element	% Present	
Copper (Cu)	3.9 - 5	
Manganese (Mn)	0.4 - 1.2	
Silicon (Si)	0.5 - 0.9	
Magnesium (Mg)	0.2 - 0.8	
Iron (Fe)	0.5 max	
Zinc (Zn)	0.25 max	
Titanium + Zirconium (Ti+Zr)	0.2 max	
Titanium (Ti)	0.15 max	
Others (Total)	0.15 max	
Chromium (Cr)	0.1 max	
Nickel (Ni)	0.1 max	
Other (Each)	0.05 max	
Aluminium (Al)	Balance	

ALLOY DESIGNATIONS

Aluminium alloy BS L168 - 2014A has similarities to the following standard designations and specifications **but may not be a direct equivalent:** 2014, AMS4121

TEMPER TYPES

The most common tempers for L168 - 2014A aluminium are:

- T6 Solution heat treated and artificially aged
- T6510 Solution heat treated and stress-relieved by stretching then artificially aged with no straightening after aging
- T6511 Solution heat treated and stress-relieved by stretching then artificially aged with minor straightening after aging

SUPPLIED FORMS

L168-2014A aluminium is supplied in Bar, Rod and Extruded Sections.

- Bar
- Extrusions

GENERIC PHYSICAL PROPERTIES

Property	Value	
Density	2.80 g/cm ³	
Melting Point	640 °C	
Thermal Expansion	22.8 x10 ⁻⁶ /K	
Modulus of Elasticity	73 GPa	
Thermal Conductivity	155 W/m.K	
Electrical Resistivity	40 % IACS	

[1 OF 2] CONTINUED **그**

wilsons

🕏 GOULD ALLOYS

PASU

MECHANICAL PROPERTIES

These Mechanical Properties are for bar in the T6511 temper

Diameter	Proof Strength (Min)	Tensile Strenth (Min)	Elongation % (Min)	
Up to & incl 2.5	370	415	6	
Over 2.5 up to and incl. 10	385	435	6	
Over 10 up to and incl. 25	415	460	7	
Over 25 up to and incl. 75	440	490	7	
Over 75 up to and incl. 100	435	480	7	
Over 100 up to and incl. 150	420	465	7	
Over 150 up to and incl. 200	390	435	7	

CONTACT

Address: Tel: Email:	(incorporated in the USA) +44 (0)1371 811 642 info@aerometalsalliance.com	

REVISION HISTORY

Datasheet Updated 14 January 2019

.

DISCLAIMER

This Data is indicative only and as such is not to be relied upon in place of the full specification. In particular, mechanical property requirements vary widely with temper, product and product dimensions. All information is based on our present knowledge and is given in good faith. No liability will be accepted by the Company in respect of any action taken by any third party in reliance thereon.

Please note that the 'Datasheet Update' date shown above is no guarantee of accuracy or whether the datasheet is up to date.

The information provided in this datasheet has been drawn from various recognised sources, including EN Standards, recognised industry references (printed & online) and manufacturers' data. No guarantee is given that the information is from the latest issue of those sources or about the accuracy of those sources.

Material supplied by the Company may vary significantly from this data, but will conform to all relevant and applicable standards.

As the products detailed may be used for a wide variety of purposes and as the Company has no control over their use; the Company specifically excludes all conditions or warranties expressed or implied by statute or otherwise as to dimensions, properties and/or fitness for any particular purpose, whether expressed or implied.

Advice given by the Company to any third party is given for that party's assistance only and without liability on the part of the Company. All transactions are subject to the Company's current Conditions of Sale. The extent of the Company's liabilities to any customer is clearly set out in those Conditions; a copy of which is available on request.

GOULD ALLOYS

Pasl Asca

wilsons

© Copyright: Aero Metal Alliance / c/o Parkway House, Unit 6 Parkway Industrial Estate, Wednesbury WS10 7WP

[2 OF 2]